

## EMedic Global 2016 (Appendix)

## List of Finalist Teams and Project Summary

|   | Institution                               | Team Members                                                                                                                                                                                      | Торіс                                                                                                          | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | University of<br>British<br>Columbia      | Mr. Peter Alexander<br>HADDAD<br>Ms. Elnaz HOSSEINI<br>Ms. Esra ALHABSHI<br>Ms. Grace SU<br>Faculty Advisor:<br>Prof. Frank KO<br>Dr. Amir SERVATI<br>Prof. Peyman SERVATI<br>Dr. Saeid SOLTANIAN | Flexible Wearable System for<br>Electrodermal Activity<br>Monitoring                                           | <ul> <li>Flexible and wearable sensors are being researched extensively in order to design and develop comfortable, safe and effective monitoring devices for clinical and home settings.</li> <li>Electrodermal activity (EDA) sensors are used to measure skin conductance which is strongly dependent on sweat with relations to the human nervous system responses.</li> <li>A major gap in current research is the lack of a long-term wearable EDA monitoring device that is comfortable and effective with spatial information.</li> </ul> |
| 2 | Tsinghua<br>University                    | Mr. Yihao CHEN<br>Ms. Ziyu MENG<br>Ms. Mianzhi YANG<br>Faculty Advisor:<br>Prof. Xue FENG                                                                                                         | Epidermal Nanosensor for<br>Mosquito Sensing and<br>Mosquito-carried Virus<br>Specific Detection               | Here the team reports an epidermal nanosensor that can<br>detect the mosquito's approaching for early alarm and<br>identify mosquitos with malaria plasmodium to prevent and<br>diagnose malaria as soon as possible                                                                                                                                                                                                                                                                                                                              |
| 3 | The Chinese<br>University of<br>Hong Kong | Mr. Baiyan JIANG<br>Mr. Xiaokun TANG<br>Ms. Shiyue LIU<br>Mr. Yifei YAO<br>Mr. ChunHo CHEUNG<br>Mr. Hongbin SUN<br>Mr. Jasper WONG<br>Faculty Advisor:<br>Prof. Arthur Fuk-Tat MAK                | VibroSAC—A Smart Active<br>Cushion with Intermittent<br>Vibration for Lower Risk of<br>Buttock Pressure Ulcers | People with spinal cord injury (SCI) and frail elderly confined<br>to<br>wheelchairs are vulnerable to pressure ulcers.<br>The team designed VibroSAC, a smart active cushion, that<br>could provide a cost-effective alternative to lower the risk of<br>pressure ulcers based on the sigmoidal tissue damage<br>threshold and intermittent vibration.                                                                                                                                                                                           |
| 4 | The Chinese<br>University of              | Mr. HoLam HEUNG<br>Mr. TianLe PAN                                                                                                                                                                 | A Soft Earthworm-like Robot<br>Targeted for GI Tract                                                           | In this project, the team presents a soft earthworm robot<br>aiming for gastrointestinal tract inspection. It is named the                                                                                                                                                                                                                                                                                                                                                                                                                        |

|   | Hong Kong<br>(Bronze<br>Award, Most<br>Innovative<br>Award)                                                              | Mr. Zhuoli ZHUANG<br>Ms. Zhiyao MA<br>Faculty Advisor:<br>Prof. Zheng LI                                                                                                                              | Inspection                                                               | GISoftBot.<br>The robot contains two inflating actuators and one<br>extending actuator with bending function added. This allows<br>the robot to crawl through tubular environment with sharp<br>bends, such as colon. Pressure inside actuators are<br>detected in real time as well, which not only enables the<br>robot crawling autonomously, but serves as an indicator<br>whether the robot is in well condition during operation.                                                                                                                                                                                            |
|---|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | The Chinese<br>University of<br>Hong Kong                                                                                | Mr. Ningqi LUO<br>Ms. Jing LIU<br>Mr. Peng SU<br>Mr. Guodong ZHOU<br>Mr. Liyuan LU<br>Ms. Yuehan CHEN<br>Ms. Wenxuan DAI<br>Mr. Hongbin SUN<br>Mr. Zhiqiang ZHOU<br>Faculty Advisor:<br>Prof. Ni ZHAO | Multimodality Sensor System<br>for Cuffless Blood Pressure<br>Monitoring | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6 | The Chinese<br>University of<br>Hong Kong                                                                                | Mr. Kai Fung CHAN<br>Mr. Jiangfan YU<br>Mr. Wai Shing LIU<br>Mr. Edwin YU<br>Faculty Advisor:<br>Prof. Li ZHANG<br>Prof. Wei WANG                                                                     | Nanorobotic Swarm for Active<br>Targeted Therapy                         | To realize the idea of a "swallowable surgeon", wireless<br>actuation of micro/nanorobots plays an important role in<br>locomotion and part of functionalization. Magnetic field and<br>ultrasound are safe and used extensively in clinical practice.<br>The team has demonstrated using magnetic field and<br>ultrasound to manipulate nanoparticles. By using this<br>innovative method, potential applications like active targeted<br>drug/cell delivery can be realized. This can minimize side-<br>effects and maximize therapeutic efficiency. Delivery to<br>unreachable region of traditional delivery is also possible. |
| 7 | The Chinese<br>University of<br>Hong Kong<br>(Gold Award,<br>Technical<br>Challenge<br>Award, Best<br>Hong Kong<br>Team) | Mr. Ka Chun LAU<br>Ms. Esther Yun Yee<br>LEUNG<br>Ms. Elaine Hon Lam SIU<br>Mr. Rico Rui Kai ZHANG<br>Ms. Ruo Xi YU<br>Mr. Billy Hin Kwong<br>LEUNG<br>Ms. Ya Li ZHENG                                | A Surgical Robotic System for<br>Endoscopic Submucosal<br>Dissection     | Endoscopic Submucosal Dissection surgical robot with 2<br>arms:<br>- Each arm constitutes a continuum section with 2-DoF<br>to provide triangulation and basic movements<br>- Each arm supports an end-effector for lifting and<br>dissecting action, respectively<br>Market value<br>- for patients: less blood loss, better preserve of physical                                                                                                                                                                                                                                                                                 |

|    |                                                                | Faculty Advisor:<br>Prof. Carmen Chung Yan<br>POON<br>Prof. Yeung YAM                                                                                                                     |                                                                       | function, shorter hospital stay<br>- for clinical: shorter training time of surgeons, reduce risk of<br>medical malpractice                                                                                                                                                                                                                                                                                                                                                                                        |
|----|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8  | The Hong<br>Kong<br>Polytechnic<br>University                  | Ms. Chingyi NAM<br>Mr. Kinming CHAN<br>Mr. Ziqi GUO<br>Ms. Kamling WONG<br>Mr. Yunong XIE<br>Mr. Waiming LI<br>Mr. Wei RONG<br>Mr. Jiancong WONG<br>Faculty Advisor:<br>Prof. Xiaoling HU | Leap Motion-Based Upper<br>Limb Rehabilitation &<br>Evaluation System | In this study, a Leap Motion based upper limb rehabilitation<br>and evaluation system was designed. The Leap Motion can<br>support the bilateral upper limb training by incorporating it<br>with<br>robotic arms; it can be used as an independent training<br>device for hand rehabilitation; it can act as an evaluation<br>device for multi-joint assessments of fingers functionality.                                                                                                                         |
| 9  | The<br>University of<br>Hong Kong                              | Mr. Enoch Jing-han<br>CHANG<br>Ms. Abigail Dee CHEN<br>Ms. Jessica Evangeline<br>Tan<br>KABIGTING<br>Faculty Advisor:<br>Prof. Wei-Ning LEE                                               | CapQi                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 | The Hong<br>Kong<br>University of<br>Science and<br>Technology | Mr. Cheuk Ho YUEN<br>Ms. Man Ching KO<br>Mr. Shih Lung TAM<br>Faculty Advisor:<br>Prof. Betty LIN                                                                                         | Bonnect - A Smart Infant Diet<br>Tracking and Advisroy<br>System      | Bonnect offers an Internet-of-Things solution to keep an<br>automatic and accurate baby log. It consists of a smart<br>infant diet tracker, an app and a cloud infrastructure. It helps<br>general parents to understand their babies' daily diet habits<br>and to share information with caretakers and medical<br>professionals. At the same time, Bonnect's predictive<br>analyze better assist doctor to judge medical urgency and<br>diagnose regarding to the appearance of disease and<br>allergy symptoms. |
| 11 | The Hong<br>Kong<br>University of<br>Science and<br>Technology | Ms. Melody, Jin Teng<br>CHUNG<br>Ms. Nadiya Aisha<br>YUDIANA                                                                                                                              | DDX - Drug Dispensary Box                                             | THE NGO One-2-One Medical Outreach Team in Phnom<br>Penh, Cambodia runs a mobile clinic which provides free<br>medical health care weekly in the harsh conditions of the<br>slums.                                                                                                                                                                                                                                                                                                                                 |

|    |                                                                | Advisor:<br>Mr. Chung Yan YU                                                                                                                                                             |                                                                                                                    | The team designs a drug carrier that can reduce the time<br>taken for the mobile pharmacy setup, so that more patients<br>can be served. Examples of results includes: Pharmacy<br>station setup time is reduced from 30 minutes to 3 minutes<br>(90% reduction); Less manpower is needed to setup and<br>man the pharmacy station; One-2-One can allocate its team<br>members on other stations and serve more patients.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 | The Hong<br>Kong<br>University of<br>Science and<br>Technology | Mr. Kevin<br>Ms. Wing Yu LEE<br>Ms. Sandra Anna<br>SOBANSKA<br>Faculty Advisor:<br>Prof. Ying CHAU                                                                                       | Electronic Medical Records<br>System (EMRS)                                                                        | <ol> <li>EMRS has been introduced into Cambodian Canal Side<br/>slum in June 2015 and its database currently holds over 200<br/>patients. After successful implementation, EMRS has been<br/>extended into the Phnom Penh Family Medical Clinic, where<br/>patients can sign up for subsidized cleft surgeries performed<br/>by visiting specialists from abroad. Web portal access to the<br/>clinic database enables these doctors to familiarize<br/>themselves with the patient history prior to the visit as well<br/>as monitor the post-surgery results online.</li> <li>With fingerprint identification, the retrieval time of patient<br/>history was reduced from an average of 3 minutes to 15<br/>seconds.</li> <li>The time spent per patient for registration in triage was<br/>reduced from an average of 5 to 3 minutes. This number is<br/>expected to continuously decrease as staff's familiarity<br/>increases.</li> <li>Dr. Annie Chen-Green, the founder of NGO One-2-One is<br/>now able to monitor the performance of her staff remotely<br/>through the web portal during her commitments outside<br/>Cambodia.</li> </ol> |
| 13 | King Saud<br>University                                        | Mr. Bilel BEN JDIRA<br>Mr. Suliman ABAALKHIL<br>Mr. Mohammed AL-<br>RASHDAN<br>Mr. Mohammed AL-<br>YAHYA<br>Faculty Advisor:<br>Dr. Naif ALAJLAN<br>Dr. Haikel HICHRI<br>Dr. Yakoub BAZI | BlindSyss-An Innovative<br>Wearable System for Helping<br>Blind People Move and<br>Sense in Indoor<br>Environments | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 14 | National                                                       | Mr. Joo Chuan YEO                                                                                                                                                                        | ThumbSense - A Wearable                                                                                            | The team developed a highly sensitive wearable thumb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|    | University of<br>Singapore                                  | Mr. Zhao Ming KOH<br>Faculty Advisor:<br>Prof. Chwee Teck LIM                                                                         | Thumb Orthotic for Real-time<br>Force and Motion Sensing                                                             | orthotic that is able to distinguish different pressing forces<br>and finger motion.<br>The device is soft, flexible, stretchable, deformable, yet<br>robust and capable of withstanding large mechanical loads.<br>Finger dynamics may be measured real-time and sent to<br>clinicians or users as part of diagnosis, monitoring and<br>prevention.                                                                                                                                                                                                                                                         |
|----|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 | National<br>University of<br>Singapore<br>(Silver<br>Award) | Mr. Hong Kai YAP<br>Mr. Benjamin Wee Keong<br>ANG<br>Faculty Advisor:<br>Prof. Raye Chen-Hua<br>YEOW                                  | EsoGlove: A Soft and<br>Wearable Robotic Glove for<br>Assistance and<br>Rehabilitation of Hand-<br>Impaired Patients | <ul> <li>EsoGlove is a soft and wearable glove that provides<br/>assistance to hand movements during activities of daily<br/>living (ADL) and rehabilitation for hand-impaired patients.<br/>Conventional solutions are bulky and consist of rigid<br/>components that are uncomfortable for patients.</li> <li>Based on their patented soft robotic technology, EsoGlove<br/>is designed to be flexible and lightweight. It is at least 3x<br/>lighter than current rehabilitation device, and able to provide<br/>more at-home rehabilitation therapy time, which leads to<br/>faster recovery.</li> </ul> |
| 16 | National<br>University of<br>Singapore<br>(Bronze<br>Award) | Mr. Thoriq SALAFI<br>Mr. Shi Xiong CHEW<br>Mr. Guang Rong TAN<br>Mr. Jia Wei Garrett<br>CHONG<br>Faculty Advisor:<br>Prof. Yong ZHANG | Microdevice for Bacterial<br>Infection Detection based on<br>Deterministic Lateral<br>Displacement                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 17 | National<br>University of<br>Singapore<br>(Bronze<br>Award) | Mr. Shihao LI<br>Mr. Duffin THORIN<br>Ms. Rongxuan ZHUANG<br>Ms. Shuhui YUAN<br>Faculty Advisor:<br>Prof. Dieter W. TRAU              | BiliOptics                                                                                                           | The team is aiming to develop a Low-cost, Point of care<br>Neonatal Jaundice Screening Device, specifically designed<br>for developing countries like Myanmar, Zambia and Kenya,<br>to protect newborns in the most vulnerable hours and<br>meanwhile improve the current technology of Non-invasive<br>Jaundice-meters.                                                                                                                                                                                                                                                                                     |
| 18 | Yonsei<br>University                                        | Mr. Seongjung KIM<br>Mr. Hansoo LEE<br>Mr. Soonjae AHN                                                                                | Sign Language Recognition<br>Using EMG and IMU Sensors                                                               | Study objectives <ol> <li>To determine various hand gestures for sign language</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|    |                                 | Mr. Jongman KIM<br>Faculty Advisor:<br>Prof. Youngho KIM                                              |                                                                                                     | <ul><li>recognition in real-time using armband type EMG and IMU sensors</li><li>2) To determine the reliable number of training samples for gesture classification accuracy over 95%</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----|---------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19 | Yonsei<br>University            | Mr. Chongmyeong LEE<br>Mr. Hyeonho HAN<br>Mr. Byounghan JANG<br>Faculty Advisor:<br>Prof. Jaehong KEY | Nanoparticle Inducing Device<br>for efficient cancer treatment<br>by using magnetic<br>nanoparticle | Cancer is a major public health problem in the United States<br>and many other parts of the world. Current medicine treats<br>cancer by using chemotherapy, radiation therapy, and<br>surgery. However,<br>these methods have severe side effects and high risk of<br>recurrence.<br>Nanoparticle therapeutics will be a promising method to<br>treat cancer more effectively minimizing side effects, but<br>current<br>targeting rate of nanoparticles is very low mostly less than<br>10% injection dose.<br>In this study, the team suggests a novel nanoparticle<br>inducing device (NID) which increases the targeting rate of<br>nanoparticles and potentially it can be utilized to treat<br>cancer. |
| 20 | Yonsei<br>University            | Mr. Hyunjun JUNG<br>Ms. Juyeon GIM<br>Mr. Taegyu PARK<br>Faculty Advisor:<br>Prof. Byongjin CHO       | Bilateral Training System for<br>Hemiparesis Rehabilitation                                         | By using flex sensors mounted on the glove, the device<br>detects flexion-extension movement of fingers. Entering<br>data can be recorded and transmitted to a computer and the<br>robotic hand respectively for monitoring and bilateral<br>training.<br>The major aim of this project is to enable long-term hand<br>recovery activities at home for patients who cannot access<br>medical institutions. Motor recovery can be facilitated using<br>bilateral training at early rehabilitation and maintained with<br>long-term exercise playing the training game. With this<br>product, patient care would be easier and users can<br>examine recovery progress and engagement themselves.               |
| 21 | ETH Zurich<br>(Silver<br>Award) | Mr. Daniel LEHMANN<br>Mr. Samuel RUCKSTUHL<br>Mr. Roel PIETERS<br>Ms. Franziska ULLRICH               | Assistive System for<br>Intravitreal Therapy                                                        | This project aims at the development and commercialization<br>of a novel system for automated intravitreal injections. It<br>allows for a fully automated injection that is initiated via a<br>computer and monitored by a remote ophthalmic surgeon<br>via a visual-auditory communication system.                                                                                                                                                                                                                                                                                                                                                                                                          |

|    |                                                                                          | Faculty Advisor:<br>Prof. Bradley J. NELSON                                                                                                                                                                                    |                                                                                                | The injection needle is guided through software, including<br>eye-tracking and iris recognition. Precision and safety are<br>fundamental to the system design and do not depend on the<br>manual dexterity of medical staff using a hand-held system.                                                                                                                                                                                             |
|----|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22 | National<br>Cheng Kung<br>University<br>(Bronze<br>Award, Best<br>Presentation<br>Award) | Ms. Hsiu-Kang HUANG<br>Ms. Wen-Ling LIAO<br>Ms. Chien-Yu LIN<br>Mr. Tzu-Yang CHEN<br>Mr. Ting-Yu SU<br>Faculty Advisor:<br>Prof. Che-Wei LIN<br>Prof. Tak-Wah WONG                                                             | Thermo-Tech Shoes                                                                              | <ul> <li>Thermo-Tech Shoes have powerful functions to provide solutions for four main challenges of diabetic patients:</li> <li>Improve blood circulation by delivering heat and far infrared ray;</li> <li>Inhibit bacterial growth by lowering foot temperature;</li> <li>Warn the patients in time to avoid infection;</li> <li>Monitor abnormal pressure and gait to evaluate the danger score automatically.</li> </ul>                      |
| 23 | University of<br>Strathclyde                                                             | Mr. Richard COPELAND<br>Ms. Robin RACKERBY<br>Ms. Laura UNDERHILL<br>Ms. Zoe TANKARD<br>Faculty Advisor:<br>Dr. Philip RICHES<br>Dr. Arjan BUIS                                                                                | Design and Development of a<br>High Performance Prosthetic<br>Foot<br>for Low Income Countries | In the developing world there are ~1-2 amputees per 1000<br>people. An amputation can cause significant financial<br>strains and social exclusion.<br>The anatomical foot provides shock absorption and energy<br>return<br>;this needs to be recreated in the prosthetic foot.<br>The Strathclyde Foot is a dynamic, inexpensive foot for the<br>developing world with a durable, cosmetic rubber casing.                                        |
| 24 | Binghamton<br>University<br>(SUNY)<br>(Bronze<br>Award)                                  | Ms. Amanda LAU<br>Ms. Sophia FU<br>Ms. Alise Hiu Ching AU<br>Mr. Steven MITCHELL<br>Mr. Jason Yumin WU<br>Mr. Nathaniel FISHER<br>Mr. Bar STERN<br>Mr. Ylli DEMA<br>Faculty Advisor:<br>Prof. Kenneth MCLEOD<br>Dr. Guy GERMAN | Tre-no-mor                                                                                     | Resting tremors complicate Parkinson's patients'<br>daily activities, making tasks such as eating,<br>drinking, writing, and putting on clothes and makeup hard to<br>do.<br>Design of the team is a cost effective physical therapy<br>device which uses mechanical force to cancel out a patient's<br>tremors. This product has potential to bring new levels of<br>treatment to<br>developing countries and greatly increases quality of life. |
| 25 | Stony Brook                                                                              | Ms. Belinda TANG                                                                                                                                                                                                               | ProperGait                                                                                     | ProperGait is a wearable fall detection device geared                                                                                                                                                                                                                                                                                                                                                                                             |

|    | University<br>(SUNY)                | Ms. Amna HAIDER<br>Mr. Bruce COLUCCIO<br>Mr. Jian LIAO<br>Mr. Alan KAO<br>Mr. Nolan KIM<br>Mr. Chanpreet SINGH<br>Mr. Biprajit SAHA<br>Ms. Ruiqi WANG<br>Faculty Advisor:<br>Prof. Mei Lin CHAN                                      |                                                                  | <ul> <li>towards rehabilitation therapy.</li> <li>Aim: Resolve abnormal gait patterns seen in stroke, elderly, and peripheral neuropathy patients, in order to prevent future life threatening falls.</li> <li>The insole records pressure data over time and includes a vibrational aspect to correct gait.</li> <li>The wearable fall detection device contains an absolute orientation IMU and a button to request/cancel a call for help.</li> <li>These components work together to create a more accurate and visual rehabilitation approach to existing devices.</li> </ul> |
|----|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26 | Stony Brook<br>University<br>(SUNY) | Ms. Elizabeth ARANGUIZ<br>Mr. Andrew PEITZSCH<br>Mr. Jason MEURLIN<br>Mr. Timucin ALTAN<br>Mr. Vinoth Ratnayaka<br>MUDIYANSELAGE<br>Mr. Shamik SHAH<br>Mr. Matthew WU<br>Faculty Advisor:<br>Prof. Mei Lin CHAN<br>Dr. Joshua MILLER | Gluclip: Infrared Blood<br>Glucometer                            | The objective is to design a portable glucose meter that is<br>minimally invasive, allows for continuous monitoring, and<br>ultimately decreases healthcare costs for diabetics                                                                                                                                                                                                                                                                                                                                                                                                    |
| 27 | University of<br>Pennsylvania       | Mr. Kuk JANG<br>Mr. Zhihao JIANG<br>Mr. Ashwin DEWAN<br>Mrs. Vivek MENON<br>Faculty Advisor:<br>Prof. Rahul MANGHARAM<br>Dr. Marco BECCANI<br>Dr. Houssam ABBAS                                                                      | In-Silico Pre-Clinical Trials for<br>Implantable Cardiac Devices | Approach of the project is to develop physiological and<br>device models for simulation-based pre-clinical trials which<br>provide insight prior to actual clinical trials.<br>Starting with 100's of real patient signals, the team's<br>approach generates 10,000's of synthetic heart models<br>across a range of conditions and then feeds them for<br>closed-loop evaluation with medical devices.                                                                                                                                                                            |

## **Final Competition Judging Panel**

- Prof. Bob NEREM (Honorary Judge), International Federation of Medical and Biological Engineering
- Prof. James GOH (Chairman), National University of Singapore
- Dr. Andros CHAN, Hong Kong Medical & Healthcare Device Industries Association
- Prof Youngho KIM , Yonsei University
- Dr. Alan LAM
- Prof. James LAU, The Chinese University of Hong Kong

## **Final Competition Judging Criteria**

- Prof. KS LEUNG, The Chinese University of Hong Kong
- Prof. Kenneth MCLEOD, Binghamton University (SUNY)
- Prof. Vincent MOK, The Chinese University of Hong Kong
- Dr. Philip RICHES, University of Strathclyde
- Prof. Yeung YAM, The Chinese University of Hong Kong

| Clinical Impacts (25%) | Needs, Potential clinical benefits, Clinical feasibility, Business model (including regulatory issues, etc.) |
|------------------------|--------------------------------------------------------------------------------------------------------------|
| Novelty (25%)          | Major conceptual innovation vs incremental gain over existing products, Potential IP                         |
| Technical Merits (40%) | Technical challenges, Demonstration of technical feasibility                                                 |
| Presentation (10%)     | Clarity, Engaging presentation                                                                               |

To avoid conflicts of interest, a judge will not give scores to the team(s) from his own institution.